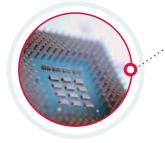

Certificate

ISO 9001 Certificate

Sigma head office: 8F Two IFC 10 Gukjegeumyung-ro, Youngdeungpo-gu Seoul 150-945, Korea

Sigma constantly endeavors to improve products. Please note that the information in this catalog is subject to change without prior notice. 2017.05 printed in Korea / Revision 0


www.sigmaelevator.com

SIGMA

Reaching new heights

Engineered to be safe & reliable

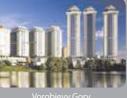
Sigma products are engineered by highly qualified engineers thereby ensuring customers receive excellent products with reliable quality.

Aesthetics Design Excellence

Sigma's international design centers are staffed with professionals who continue to pursue ideal aesthetic designs to satisfy customers needs.

Global Network

Sigma has served customers in more than 60 countries over the last 40 years.



SIGMA Global Network

Sigma has installed over 160,000 elevators worldwide since 1978



The Essence of World Best Technologies...

Sigma is a respected provider of escalators with an unmatched heritage

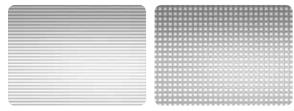
Design

Artistic design with smooth and natural lines

Safety Elimination of the source of safety hazards

Robust Strength with comfort and low noise

Noise Testing Room


The Sigma factory has a highly sophisticated noise testing room to test the noise level of each escalator. This ensures that Sigma escalators operate with low noise and vibration

> Artistic design, pleasant ride, Optimally engineered, high safety standard Assures low noise and minimal vibration

Floor

Aluminum

Stainless steel (Option)

Glass panel

Clear Glass

Various colors for handrails

(Option) Royal Blue (Option) Beige (Option) French Grey (Option) Green (Option)

· Black · Red

Sigma Commercial Escalators are well suited for today's urban structures. New technological advancements have been applied to make escalator the world-best in design and safety. Advanced technology and aesthetic design makes Sigma escalators appealing while improved strength and safety features offer security to passengers.

Green Future in Your Life

Green Technology

With unique design and various design options to choose from Sigma escalators blend with building design

Ø SIGMA

Sigma escalators will continue to meet customer demands with higher goals than expected. With certificates to meet various standards around the world, we offer the best quality and safety.

Structure & Safety Device

• Self-diagnostic functions with remote communication

Engineered through field know-how

• Advanced safety system with robust design

Emergency Stop

Located on the upper and lower landing and close to the handrail entrance. The safety stop can be manually activated by pressing a red emergency stop button in case of emergency.

Operational Brake

Integrated within the escalator driving machine and between the motor and reduction gearbox. Escalator safety brake can be activated through electromagnetic braking.

Motor Thermic Protection

The thermal protection switch is located in the motor coil. If the motor temperature exceeds 155°C, the thermal protection sensor will automatically shut down the escalator.

Comb Plate Contact

The comb panel protection switches are located on two sides of each comb plate. if foreign matter lodges between the comb and steps, the comb plate will automatically lift upwards initiating the safety switch and stopping escalator operation.

Handrail Entry Safety Guard

The handrail entry safety guard is in the handrail entry box of the upper and lower landing, and meets the standard requirements. If foreign matter is inserted in the handrail or rubber head, the safety switch installed behind the rubber head will automat.

Floorplate Safety Contact

A safety switch is installed under the floorplate to ensure proper floorplate positioning. If the floorplate is not initiate, stopping elscalator operation until the floorplate is properly closed.

Auxiliary Brake (Rise>6m)

The auxiliary brake is located at the upper landing. A hoisting height of over 6m, can be realized via action of the wedge and brake disc installed at the main shaft drive, and is the standard configuration. Optional configuration:hoisting height below 6m.

Safety Grounding

All electrical components on the escalator are safely grounded, and directly connected to the ground via the escalator truss.

Non-reversal Device

A rotation sensor is located on the machine that monitors motor rotation speed and direction. If the motor rotates in reverse, the sensor will send a corresponding signal to the main controller to activate the escalator brake.

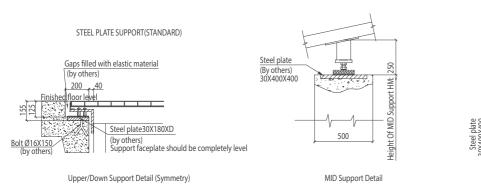
Step Broken Protection Device

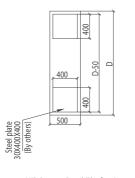
The broken step protection device is located at the machine section close to the upper and lower leveling. If the step of its roller breaks, the safety switch will automatically engage. The switch can be reset by manual.

Missing Step Monitoring Device

Two metal acquisition sensors are located at the turning position of the upper and lower steps. If the step is missing or installed incorrectly, the sensor will send a signal to the control system, to shut down the escalator.

Broken Chain Protection Device


The safety switch is located on the tensioning carriage of the lower landing. If the step chain breaks or stretches abnormally, the safety switch will initiate stopping the escalator.



Layout Vera Commercial (Rise : 1500(30°)/1770(35°) ~ 6000mm)

Hole for lifting or hook (by others) (Bear >=50KN) 100 L1=L+A+B L= (30° =1.732*H, 35° =1.428*H) D Hole for lifting or hook (by others) Safety Fence (BY OTHERS) Delta guard (by others) (Bear >=50KN) R1 100 233 POWER SUPPLY d (by others) MEMO: MID support beam by lacal, formula: (mm) HM=(SL1-2249 *)Xtg30°-(980/cos30°+250) R2 1823 2000 2010 Angle min. K min. M Drainage hole nin500 min2000 Clear floor access area Clear floor access area

min2500

MID Support Detail (Planform)

Technical Data Vera Commercial (Rise : 1500(30°)/1770(35°) ~ 6000mm)

Dimensions

Angle of Inclination	No. of Flat Step	Rise (H)	Step Width	Α	В	G	с	D	I	J	к	М	E
	2		600	2949	2249	900	1940	1740	740				827
30°	Z	1500	800/1000	2449	2249	1000	1940	1740		000	1146	2201	897
30	3	~ 6000	600	3349	2649	900	2340	2140	980	996	1140	2281	827
	3		800/1000	2849	2049	1000	2340	2140					897
	2		600	2977	2216	900	1000						827
25%	2	1770	<u>800/1000</u> 2477 2316 1000 1968	1968	1807	000	000	1140	20.41	897			
35°	3	~ 6000	600	3377	900	2260	2207	980	996	1146	2041	827	
	3		800/1000	2877	2716	1000	2368	58 2207					897

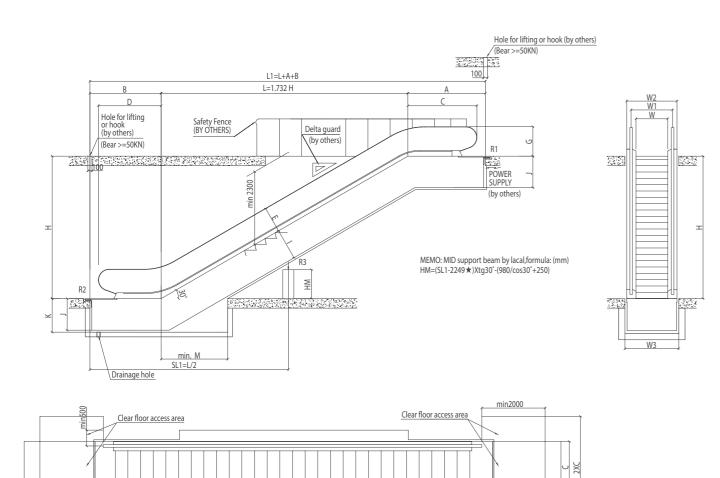
Angle of Inclination	No. of Flat Step	Rise (H)	Step Width	w	W1	W2	W3
		1500(30°)/	600	611	841	1144	1230
30°/35°	2/3	1770(35°) ~	800	814	1044	1347	1430
		6000	1000	1017	1247	1551	1630

Reaction Load

Angle of Inclination	No. of Flat Step	Step Width	R1	R2	R3 (With Intermediate Support)
		c00	3.66*L1+7	3.66*L1+2.3	-
		600	1.53*L1+4.8	1.53*L1+2	5.02*L1+1.3
200	2/2	000	4.31*L1+7	4.31*L1+2.3	-
30°	2/3	800	1.78*L1+5.2	1.78*L1+2.2	5.74*L1+1.3
		1000	4.96*L1+7	4.96*L1+2.3	-
		1000	2.03*L1+5.7	2.03*L1+2.3	6.46*L1+1.4
		600	3.76*L1+7	3.76*L1+2.3	
35°	2/3	800	4.41*L1+7	4.41*L1+2.3	
		1000	5.11*L1+7	5.11*L1+2.3	

| Electric Data

Angle of Inclination	No. of Flat Step	Step Width	Rise H (mm)	Motor (kW)	Power Source Lead In Wire (mm^2)	MCCB Capacity of Building (A)	
		600	1500 ~ 6000	7.5		30	
		000	1500 ~ 5200	7.5		30	
30°/35°	2/3	800	5201 ~ 6000	9.5	10	40	
		1000	1500 ~ 4200	7.5		30	
		1000	4201 ~ 6000	9.5		40	


Ø SIGMA

(units : mm)

(units:mm)

(unit: kN, L1:m, 1kN=100kg)

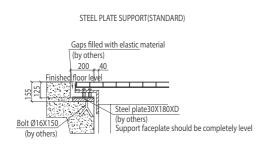
Layout Vera Commercial (Rise : 6001 ~ 8000mm)

Steel plate (By others) 30X400X400

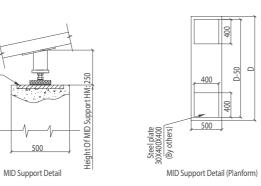
Technical Data Vera Commercial (Rise : 6001 ~ 8000mm)

Dimensions

Angle of Inclination	No. of Flat Step	Rise (H)	Step Width	Α	В	G	с	D	I	J	к	М	E
30° 3	6001	600	3349	2649	1000	2340	2140	980	996	1146	2060	882	
50	2	~ 8000	800/1000	2849	2049	1000	2540	2140	960	990	1140	2000	002


Angle of Inclination	No. of Flat Step	Rise (H)	Step Width	w	W1	W2	W3
		6001	600	611	802	1144	1230
30°	3	~	800	814	1005	1347	1430
		8000	1000	1017	1208	1551	1630

Reaction Load


Angle of Inclination	No. of Flat Step	Step Width	R1	R2	R3 (With Intermediate Support)
		c00	3.66*L1+7	3.66*L1+2.3	-
		600	1.53*L1+4.8	1.53*L1+2	5.02*L1+1.3
200		000	4.30*L1+7	4.30*L1+2.3	-
30°	3	800 -	1.78*L1+5.2	1.78*L1+2.2	5.74*L1+1.3
		1000	4.96*L1+7	4.96*L1+2.3	-
		1000	2.03*L1+5.7	2.03*L1+2	6.46*L1+1.4

Electric Data

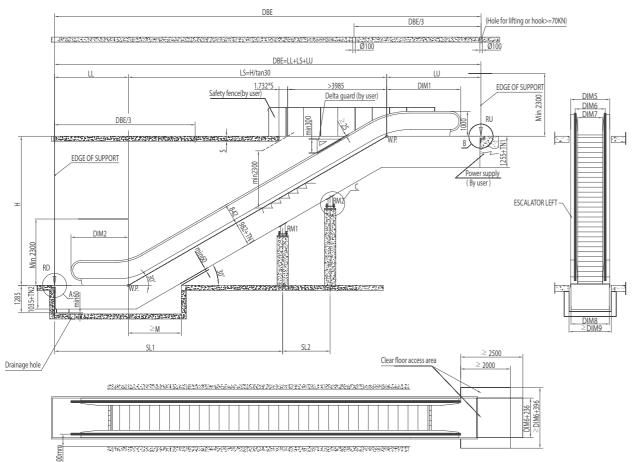
Angle of Inclination	No. of Flat Step	Step Width	Rise H (mm)	EM-1 Motor (kW)	Power Source Lead In Wire (mm^2)	MCCB Capacity of Building (A)	
		c00	6001 ~ 7100	7.5		30	
		600	7101 ~ 8000	9.0			
			6001 ~ 6700	9.0		40	
20%	2	800	6701 ~ 7200	9.5	10		
30°	3		7201 ~ 8000	11.0	10	50	
			6001 ~ 6400	9.5		40	
		1000	6401 ~ 7500	11.0		50	
			7501 ~ 8000	13.0		60	

min2500

8

400

500

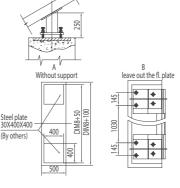

Ø SIGMA

(units:mm)

(units:mm)

(unit: kN, L1:m, 1kN=100kg)

Layout Vera Public (Rise : 3000 ~ 15000mm)



% If exterior cladding is done by others, distance between exterior bottom and truss bottom TN1 and TN2 would be defined according to customer's requirement.

Restance less than 400mm (BY OTHERS) Detail A Without contact mat Detail A With contact mat Detail C Gaps filled with mastic (By others) Gaps filled with mastic (By user Steel plate30X180XDI Steel plate30X180XDI (by user) Full length of support nose to be ture level (by user) Full length of support nose to be ture level <u>Ø16X150</u> (by user) Detail B (ARRANGEMENT WITH ANTI-VIBRATION RUBBER PADS WITH FIXED SUPPORT) Detail B Gaps filled with mastic (By user) 30X400X4 Gaps filled with mastic (By user) hed floor lev ed floor leve Steel plate30X180XDIM9 Steel plate30X180XDIM9 Nic Lin

(by user) Full length of support nose to be ture level

Ø16X150

Technical Data Vera Public (Rise : 3000 ~ 15000mm)

Dimensions

Turne	Angle of	No. of	Rise (H)	Cton Width	LU	LL	STS Bal	ustrade	м
Туре	Inclination	Flat Step	Kise (H)	Step Width	LU	LL	DIM1	DIM2	IVI
		2		800	2762	2248	1957	1644	
		2	2000	1000	2702	2240	/251	1044	
ESCS	30°	3	3000	800	3162	2648	2357	2044	
ESCS	50	5	15000	1000	5102	5102 2040	2557	2044	
		4	15000	800	3562	3048	2757	2444	2300
		4		1000	5502	5040	2131	2444	
		2		800	3056	2481	2251	1877	2300
		۷.	2000	1000	5050	2401	2231	1077	
ESCI	30°	3	3000	800	3456	2881	2651	2277	
LJCL	ESCL 30°	5	15000	1000	5450	2001	2051	2211	
		4	10000	800	3856	3281	3051	2677	
		-+		1000	2020	3850 3281		2077	

Angle of Inclination	No. of Flat Step	Rise (H)	Step Width	DIM5	DIM6	DIM7	DIM9
30°	2/3/4	3000 ~ 15000	800	1367	1005	814	1430
	2/3/4	3000~13000	1000	1570	1208	1017	1630

Reaction Load

Angle of Inclination	No. of Flat Step	Step Width	RU	RD	RM1 (With Intermediate Support)	RM2 (With Intermediate Support)	Туре
			4.5*DBE+22	4.6*DBE+7.0	-	-	
		800	1.7*DBE+21.5	1.7*DBE+1.5	5.7*DBE+10.0	-]
30°	2/3/4		1.4*DBE+21.5	1.4*DBE+1.5	3.8*DBE+10.0	3.8*DBE+15.0	ESCS
50	2/3/4		5.0*DBE+22.0	5.0*DBE+7.0	-	-	ESCS
	1000	1000	1.9*DBE+21.5	1.9*DBE+1.5	6.2*DBE+10.0	-	1
			1.5*DBE+21.5	1.5*DBE+1.5	4.0*DBE+10.0	4.0*DBE+15.0	1
			4.6*DBE+22.0	4.6*DBE+7.0	-	-	
		800	1.7*DBE+23.0	1.7*DBE+3.0	5.7*DBE+15.0	-	1
30°	2/3/4		1.4*DBE+23.0	1.4*DBE+23.0	3.8*DBE+15.0	3.8*DBE+15.0	ESCL
30	2/3/4		5.0*DBE+22.0	5.0*DBE+7.0	-	-	ESCL
		1000	1.9*DBE+23.0	1.9*DBE+3.0	6.5*DBE+15.0	-	1
			1.5*DBE+23.0	1.5*DBE+3.0	4.0*DBE+15.0	4.0*DBE+15.0	1

Electric Data

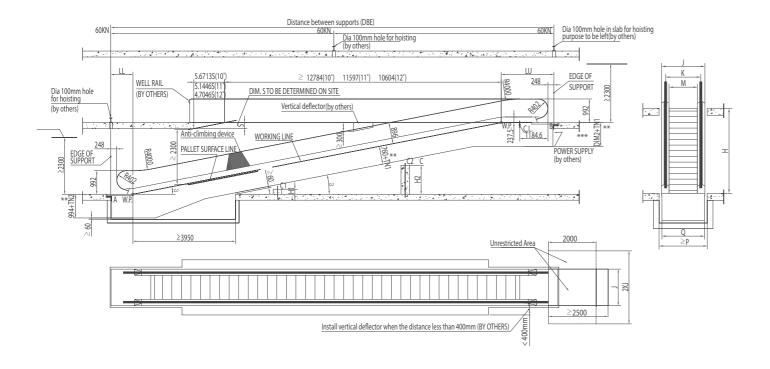
Angle of Inclination	No. of Flat Step	Step Width	Rise H (mm)	Motor (kW)	Machine	Power Source Lead In Wire (mm^2)	MCCB Capacity of Building (A)
			3000 ~ 5300	7.5			
			5301 ~ 7300	9.5			
			7301 ~ 8200	11.0	EM-W1		
		800	8201 ~ 10200	13.0			
			10201 ~ 12000	15.0			30
			12001 ~ 13600	15.0	EN LID		
200	2/2/4		13601 ~ 15000	18.5	EM-H2	10	
30°	2/3/4		3000 ~ 4400	7.5			
			4401 ~ 5600	9.5			
			5601~6800	11.0	EM-W1		
		1000	6801 ~ 10200	13.0			
			10201 ~ 12000	15.0			
			12001 ~ 12800	18.5	EM LID		
			12801 ~ 15000	24.0	EM-H2	16	

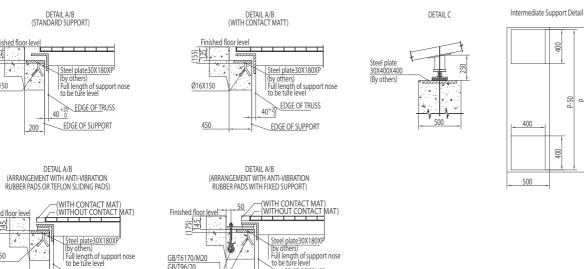
SIGMA Escalator & Movingwalks

Full length of support nose to be ture level

Finished f

Ø SIGMA


(units:mm)


(units:mm)

(unit: kN, L1:m, 1kN=100kg)

Layout Inclined Movingwalks (Rise : 1500 ~ 6000mm)

% If exterior cladding is done by others, distance between exterior bottom and truss bottom TN1 and TN2 would be definced according to customer's requirement.

+20 EDGE OF TRUSS EDGE OF SUPPORT

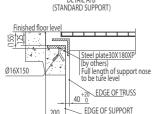
GB/T6170/M20 GB/T96/20 GB/T799/M20*300 Ø16X150

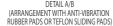
450/290

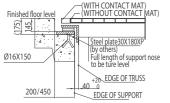
Technical Data Inclined Movingwalks (Rise : 1500 ~ 6000mm)

Dimensions

Angle of Inclination	Rise (H)	Step Width	LU	Ш	DIM2
10°		800	2426	1020	
10° 1500	1000	2420	1020	994	
11°	1500	800	2200	020	(EM1-W1) 1054
11	~ 6000	1000	2208	928	
1.7°	0000	800	2026		(ECH2/EC2-25)
12°		1000	2026	852	


Angle of Inclination	Rise (H)	Step Width	М	к	ſ	Р
10°		800	805	1037	1330	1430
10		1000	1007	1237	1530	1630
11°	1500	800	805	1037	1330	1430
11	6000	1000	1007	1237	1530	1630
10°	0000	800	805	1037	1330	1430
12°		1000	1007	1237	1530	1630

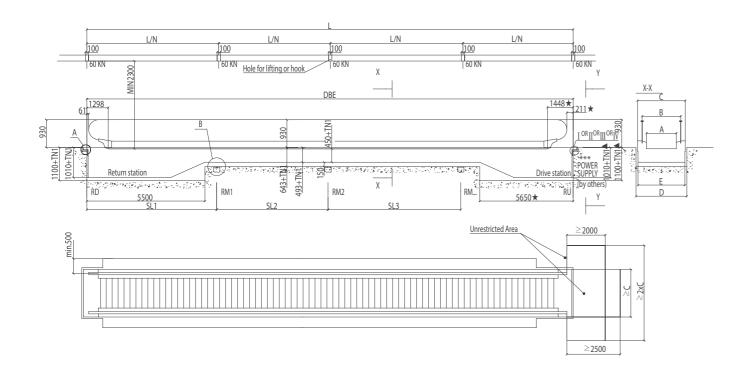

Reaction Load

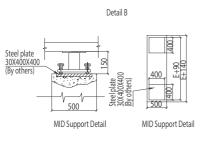

Angle of Inclination	Step Width	A	В	C1 (With Intermediate Support)	C2 (With Intermediate Support)
		4.25*DBE+8.2	4.25*DBE+18.0	-	-
	800	1.90*DBE+8.0	1.90*DBE+17.0	5.20*DBE+8.2	-
10°/11°/12°		1.30*DBE+9.0	1.30*DBE+17.0	3.10*DBE+9.2	3.10*DBE+10.0
10/11/12		4.90*DBE+6.2	4.90*DBE+14.0	-	-
	1000	2.20*DBE+5.0	2.20*DBE+14.0	6.10*DBE+4.2	-
		1.50*DBE+6.0	1.50*DBE+15.0	3.45*DBE+5.0	3.45*DBE+5.2

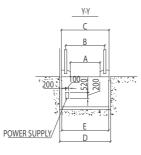
Electric Data

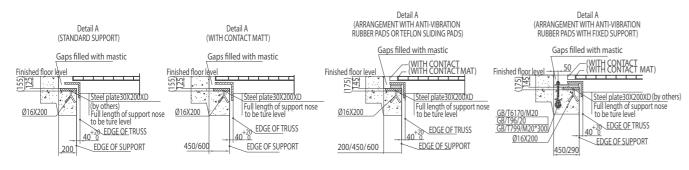
Angle of Inclination	Step Width	Rise H (mm)	Motor (kW)	Power Source Lead In Wire (mm^2)	MCCB Capacity of Building (A)	
		1500 ~ 4000	7.5		30	
	800	4001 ~ 5300	9.5		40	
		5301 ~ 6000	11.0		50	
10°		1500 ~ 3500	7.5		30	
	1000	3501 ~ 4600	9.5		40	
	1000	4601 ~ 5400	11.0		50	
		5401 ~ 6000	13.0		60	
	800	1500 ~ 4200	7.5		30	
		4201 ~ 5400	9.5		40	
		5401 ~ 6000	11.0		50	
11°	1000	1500 ~ 3600	7.5	10	30	
		3601~4700	9.5		40	
	1000	4701 ~ 5600	11.0		50	
		5601 ~ 6000	13.0	50 30 40 50 60 30 40 50 40 50 40 50 60 30 40 50 60 30 40 50 50 60 30 40 50 50 50 30 40 40 50 50 50 50 50 50 50 50 50 5		
		1500~4300	7.5		30	
	800	4301 ~ 5600	9.5		40	
		5601 ~ 6000	11.0		50	
12°		1500 ~ 3700	7.5		30	
	1000	3701 ~ 4800	9.5		40	
	1000	4801 ~ 5700	11.0		50	
		5701 ~ 6000	13.0		60	

Ø SIGMA


(units:mm)


(units : mm)


(unit: kN, L1:m, 1kN=100kg)


Layout Horizontal Movingwalks

If exterior cladding is done by others, distance between exterior bottom and truss bottom TN1 would be defined according to customer's requirement.

Technical Data Horizontal Movingwalks

| Dimensions

Angle of Inclination	Max. DBE	Step Width	В	с	D	E
0°	100.000	800	1037	1390	1500	1360
	~ 100,000	1000	1237	1590	1700	1560

Reaction Load

Angle of Inclination	Step Width	DBE (m)	RD	RU	RM1	RM2	RM3	RM4	RM5	RM6	RM7	RM8	RM9
		DBE<=10	4.35*DBE	4.35*DBE+9.6	-	-	-	-	-	-	-	-	-
		10 <dbe<=20< td=""><td>1.63*DBE</td><td>1.63*DBE+9.6</td><td>5.44*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=20<>	1.63*DBE	1.63*DBE+9.6	5.44*DBE	-	-	-	-	-	-	-	-
		20 <dbe<=30< td=""><td>1.16*DBE</td><td>1.16*DBE+9.6</td><td>3.19*DBE</td><td>3.19*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=30<>	1.16*DBE	1.16*DBE+9.6	3.19*DBE	3.19*DBE	-	-	-	-	-	-	-
		30 <dbe<=40< td=""><td>0.87*DBE</td><td>0.87*DBE+9.6</td><td>2.39*DBE</td><td>2.39*DBE</td><td>2.39*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=40<>	0.87*DBE	0.87*DBE+9.6	2.39*DBE	2.39*DBE	2.39*DBE	-	-	-	-	-	-
	800	40 <dbe<=50< td=""><td>0.70*DBE</td><td>0.70*DBE+9.6</td><td>1.92*DBE</td><td>1.74*DBE</td><td>1.74*DBE</td><td>1.92*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=50<>	0.70*DBE	0.70*DBE+9.6	1.92*DBE	1.74*DBE	1.74*DBE	1.92*DBE	-	-	-	-	-
	800	50 <dbe<=60< td=""><td>0.58*DBE</td><td>0.58*DBE+9.6</td><td>1.60*DBE</td><td>1.46*DBE</td><td>1.46*DBE</td><td>1.46*DBE</td><td>1.60*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=60<>	0.58*DBE	0.58*DBE+9.6	1.60*DBE	1.46*DBE	1.46*DBE	1.46*DBE	1.60*DBE	-	-	-	-
		60 <dbe<=70< td=""><td>0.50*DBE</td><td>0.50*DBE+9.6</td><td>1.37*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.37*DBE</td><td>-</td><td>-</td><td>-</td></dbe<=70<>	0.50*DBE	0.50*DBE+9.6	1.37*DBE	1.25*DBE	1.25*DBE	1.25*DBE	1.25*DBE	1.37*DBE	-	-	-
		70 <dbe<=80< td=""><td>0.44*DBE</td><td>0.44*DBE+9.6</td><td>1.20*DBE</td><td>1.09*DBE</td><td>1.09*DBE</td><td>1.09*DBE</td><td>1.09*DBE</td><td>1.09*DBE</td><td>1.20*DBE</td><td>-</td><td>-</td></dbe<=80<>	0.44*DBE	0.44*DBE+9.6	1.20*DBE	1.09*DBE	1.09*DBE	1.09*DBE	1.09*DBE	1.09*DBE	1.20*DBE	-	-
		80 <dbe<=90< td=""><td>0.39*DBE</td><td>0.39*DBE+9.6</td><td>1.06*DBE</td><td>0.97*DBE</td><td>0.97*DBE</td><td>0.97*DBE</td><td>0.97*DBE</td><td>0.97*DBE</td><td>0.97*DBE</td><td>1.06*DBE</td><td>-</td></dbe<=90<>	0.39*DBE	0.39*DBE+9.6	1.06*DBE	0.97*DBE	0.97*DBE	0.97*DBE	0.97*DBE	0.97*DBE	0.97*DBE	1.06*DBE	-
0°		90 <dbe<=100< td=""><td>0.35*DBE</td><td>0.35*DBE+9.6</td><td>0.96*DBE</td><td>0.87*DBE</td><td>0.87*DBE</td><td>0.87*DBE</td><td>0.87*DBE</td><td>0.87*DBE</td><td>0.87*DBE</td><td>0.87*DBE</td><td>0.96*DBI</td></dbe<=100<>	0.35*DBE	0.35*DBE+9.6	0.96*DBE	0.87*DBE	0.96*DBI						
0		DBE<=10	5.00*DBE	5.00*DBE+11	-	-	-	-	-	-	-	-	-
		10 <dbe<=20< td=""><td>1.88*DBE</td><td>1.88*DBE+11</td><td>6.25*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=20<>	1.88*DBE	1.88*DBE+11	6.25*DBE	-	-	-	-	-	-	-	-
		20 <dbe<=30< td=""><td>1.33*DBE</td><td>1.33*DBE+11</td><td>3.67*DBE</td><td>3.67*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=30<>	1.33*DBE	1.33*DBE+11	3.67*DBE	3.67*DBE	-	-	-	-	-	-	-
		30 <dbe<=40< td=""><td>1.00*DBE</td><td>1.00*DBE+11</td><td>2.75*DBE</td><td>2.50*DBE</td><td>2.75*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=40<>	1.00*DBE	1.00*DBE+11	2.75*DBE	2.50*DBE	2.75*DBE	-	-	-	-	-	-
	1000	40 <dbe<=50< td=""><td>0.80*DBE</td><td>0.80*DBE+11</td><td>2.20*DBE</td><td>2.00*DBE</td><td>2.00*DBE</td><td>2.20*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=50<>	0.80*DBE	0.80*DBE+11	2.20*DBE	2.00*DBE	2.00*DBE	2.20*DBE	-	-	-	-	-
		50 <dbe<=60< td=""><td>0.67*DBE</td><td>0.67*DBE+11</td><td>1.83*DBE</td><td>1.67*DBE</td><td>1.67*DBE</td><td>1.67*DBE</td><td>1.83*DBE</td><td>-</td><td>-</td><td>-</td><td>-</td></dbe<=60<>	0.67*DBE	0.67*DBE+11	1.83*DBE	1.67*DBE	1.67*DBE	1.67*DBE	1.83*DBE	-	-	-	-
		60 <dbe<=70< td=""><td>0.57*DBE</td><td>0.57*DBE+11</td><td>1.57*DBE</td><td>1.43*DBE</td><td>1.43*DBE</td><td>1.43*DBE</td><td>1.43*DBE</td><td>1.57*DBE</td><td>-</td><td>-</td><td>-</td></dbe<=70<>	0.57*DBE	0.57*DBE+11	1.57*DBE	1.43*DBE	1.43*DBE	1.43*DBE	1.43*DBE	1.57*DBE	-	-	-
		70 <dbe<=80< td=""><td>0.50*DBE</td><td>0.50*DBE+11</td><td>1.38*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.25*DBE</td><td>1.38*DBE</td><td>-</td><td>-</td></dbe<=80<>	0.50*DBE	0.50*DBE+11	1.38*DBE	1.25*DBE	1.25*DBE	1.25*DBE	1.25*DBE	1.25*DBE	1.38*DBE	-	-
		80 <dbe<=90< td=""><td>0.44*DBE</td><td>0.44*DBE+11</td><td>1.22*DBE</td><td>1.11*DBE</td><td>1.11*DBE</td><td>1.11*DBE</td><td>1.11*DBE</td><td>1.11*DBE</td><td>1.11*DBE</td><td>1.22*DBE</td><td>-</td></dbe<=90<>	0.44*DBE	0.44*DBE+11	1.22*DBE	1.11*DBE	1.11*DBE	1.11*DBE	1.11*DBE	1.11*DBE	1.11*DBE	1.22*DBE	-
		90 <dbe<=100< td=""><td>0.40*DBE</td><td>0.40*DBE+11</td><td>1.10*DBE</td><td>1.00*DBE</td><td>1.00*DBE</td><td>1.00*DBE</td><td>1.00*DBE</td><td>1.00*DBE</td><td>1.00*DBE</td><td>1.00*DBE</td><td>1.10*DB</td></dbe<=100<>	0.40*DBE	0.40*DBE+11	1.10*DBE	1.00*DBE	1.10*DB						

| Electric Data

Angle of Inclination	Step Width	DBE (m)	Motor (kW)	Power Source Lead In Wire (mm^2)	MCCB Capacity of Building (A)			
		DBE<=55	7.5					
		55 <dbe<=67< td=""><td>9.0</td><td></td><td></td></dbe<=67<>	9.0					
	800	67 <dbe<=71< td=""><td>9.5</td><td></td><td rowspan="6">30</td></dbe<=71<>	9.5		30			
		71 <dbe<=83< td=""><td>11.0</td><td></td></dbe<=83<>	11.0					
		83 <dbe<=100< td=""><td>13.0</td><td></td></dbe<=100<>	13.0					
0°		DBE<=47	DBE<=47 7.5 10	10				
		47 <dbe<=57< td=""><td>9.0</td><td></td></dbe<=57<>	9.0					
	1000	57 <dbe<=61< td=""><td>9.5</td><td></td></dbe<=61<>	9.5					
	1000	61 <dbe<=71< td=""><td>11.0</td><td></td><td></td></dbe<=71<>	11.0					
		71 <dbe<=85< td=""><td>13.0</td><td></td><td>30</td></dbe<=85<>	13.0		30			
		85 <dbe<=100< td=""><td>15.0</td><td></td><td colspan="2"></td></dbe<=100<>	15.0					

Ø SIGMA

(units:mm)

(unit: kN, L1:m, 1kN=100kg)

Technical Data Vera Commercial

Technical Features

Operation Functions

Standard O Option

Function	Description	
Sockets for manual inspection	Used to connect manual inspection control device.	•
Asymmetric and phase sequence relay	Asymmetry supply voltage monitor device.	•
Chain and step wheel control contact	The devices are installed at both landings and near the incline section. It is activated when a step is lowered due to rupture or when the step chain breaks.	•
Main circuit breaker	The main circuit switch is located on the controller upper landing. It can be locked in the "OFF" position.	•
Ground contact	Ground contact device	•
Sockets for hand lamp	In maintenance room of each landing, there is a power supply socket used for maintenance facilities, including the hand lamp.	•
Manual inspection control device	Portable button box, used to facilitate service, adjustment and repair of escalator.	
Controller lifting device for controller inside truss	Use for lift the control panel in maintenance room at upper landing. - 1 device up to 4 units	
Hand wheel	For maintenance purposes or in case of emergency the escalator can be operated by a hand wheel. To adapt the hand wheel on the motor shaft the cover has to be removed. After removal of the cover, the hand winding stop switch will be activated and, electrical safety chain will be interrupted.	•
Motor covers control / Hand wheel control contact	Cut down when machine fan cover is opened.	•
Escalator safety tool	In case of working in the truss, the escalator should be mechanically blocked. Safety tool is used to block the motor which is independent with operational brake.	•
Entry steps for maintenance rooms	For convenience, there is a maintenance step with hinged lids installed in both upper and lower maintenance rooms.	•
Brake lining wear device	When energy saving model selects intermittent operation, control contact for breaking lining wear should be selected	С
Skirting panel switches	The device is installed behind skirt panel at both landing. If an object is trapped between the side of a step and the skirt panel, the safety switch will be activated.	С
Mechanic overspeed device	Only triggers operational brake for EN115-2008	C
Main drive chain breakage protection	Once the main drive chain breaks, the sensor detecting main drive speed will detect the main drive speed which became fast. Then it will stop the escalator.	C
Handrail break protect	Stops the escalator if handrail breaks or stops.	c
		-

Escalator & Movingwalks

Sigma Movingwalks keeps you on the move Airport / Shopping Center / Subway Station / Railway Station / Hospital / Exhibition Center / Museum / Amusement Park etc.

